Prof. Dipl.-Ing. P. Pauli German Armed Forces University Munich Section: RF- and Microwaves, Radars 85577 Neubiberg, 31st of May 2019 Werner-Heisenberg-Weg 39 <prof.peter.pauli@t-online.de> Page 1

EXPERT REPORT

31th of May 2019

Ordered by:	GEOVITAL Akademie für Geobiologie und Strahlenschutz Unterwolfbühl 430 A-6934 Sulzberg
Device under Test:	Shielding fabric NOVA in cotton version measured single- and double-layered
Subject:	Measuring the shielding efficiency against electromagnetic waves from 100 MHz to 40 GHz
Regulations:	ASTM D-4935-10 and IEEE 299-2006 (ASTM = American Society of Testing and Materials)
Date of Measurements:	: 28 th of May 2019
Content:	6 pages of text and 2 appendices

Results: The shielding fabric **NOVA** has been tested with electromagnetic waves showing polarizations in all directions. The results of the shielding efficiency are valid as well for vertically as also for horizontally polarized waves. Table 1 presents the values of shielding efficiency (SE), measured at some interesting frequencies:

Shielding fabric NOVA	Shielding Efficiency	
Communication services:	single layered	double layered
C-Net, TETRA, 450 MHz	23 dB	38 dB
D-Net, GSM 900, 900 MHz	28 dB	42 dB
E-Net, GSM1800, 1800 MHz	43 dB	56 dB
Blue-Tooth, WLAN 2450 MHz	36 dB	51 dB
5G (Sub 6GHz-Band) 3.4 – 3.8GHz	34 dB	39 dB
W-LAN (new generation) 5.8 GHz	20 dB	31 dB

 Table 1: Shielding efficiency at different frequencies

1. Introduction

To analyse the measured diagram, it is helpful to use this table. You can easily find the relation between shielding in "dB" and transmitted power in "%".

To calculate the dB-value from the incident power P_1 respectively field strength E_1 and the transmitted power P_2 or field strength E_2 , one has to use the following

equation:
$$a_{Shield} = 10 \cdot \log \frac{P_2}{P_1} = 20 \cdot \log \frac{E_2}{E_1}$$
 in decibel (dB)

The network analyzer presents the results of the shielding measurements in "Decibel" (dB). The mode of measurement is a typical transmission measurement (S₂₁-measurement). This dB value indicates, how much the level of an incident power or power flux density has decreased, passing the device under test.

It describes values of fieldstrengths as well. But the calculation of the percentvalues in the table at the right refers to the **powerrelationships**.

So it tells - for example that 20 dB shielding reduces the penetrating power down to 1%.

	Conv	version of Decibel t	o Perce	ent of transmitted
	dB	Power Transmission in %	dB	Power Transmission in %
	0	100.00		
	1	81.00	21	0.78
	2	62.80	22	0.63
	3	50.00	23	0.50
	4	40.00	24	0.39
	5	31.00	25	0.31
	6	25.00	26	0.25
	7	20.00	27	0.20
	8	16.00	28	0.18
	9	12.50	29	0.12
	10	10,00	30	0.10
	11	7.90	31	0.08
	12	6.25	32	0.06
	13	5.00	33	0.05
	14	4,00	34	0.04
	15	3.13	35	0.03
	16	2.50	36	0.02
	17	2.00	37	0.02
ĺ	18	1.56	38	0.02
ĺ	19	1.20	39	0.02
ĺ	20	1.00	40	0.01
ĺ			50	0.001

Table 2: Conversion of shielding-efficiency-values, given in dB, to %-values of transmitted power

Prof. Dipl.-Ing. P. Pauli German Armed Forces University Munich Section: RF- and Microwaves, Radars 85577 Neubiberg, 31st of May 2019 Werner-Heisenberg-Weg 39 <prof.peter.pauli@t-online.de> Page 3

2. Measurement Setup according to ASTM D 4935-10 from 100 MHz to 8 GHz

This standard was published by the American Society of Testing and Materials (ASTM).

The DUT (**D**evice **U**nder **T**est) was installed between two coaxial TEM-adapters. The test signal was emitted from port 1 of the network analyzer. The transmitted signal was received by port 2 of the NWA. During a S₂₁-calibration without DUT but with a neutral distance holder of the same thickness as the DUT, the transmission value was set to "0" dB.

Fig. 1: Set-up to measure the shielding efficiency by means of TEM-adapters

Test equipment:

Vector Network Analyzer, type ZVRE, 30 kHz – 8 GHz, Rohde & Schwarz A pair of coaxial TEM-Adapters, (100 kHz – 8 GHz) Wandel + Goltermann Documentation: OfficeJet 500, H & P

Due to the coaxial structure of the adapters they transmit a TEM-wave. Thus the DUT was hit by **E-field vectors in all transverse directions**.

The consequence is: If the measured shielding is very good, you can assume, that the DUT will shield as well against vertically as also horizontally polarized waves in the same quality.

The results correspond closely to the reality, where the polarization of the incident waves cannot be predicted.

2.1 Shielding measurements according to IEEE 299-2006 from 10 GHz to 40 GHz

The measurements were performed according to IEEE 299 on 28th of May 2019 at the EMC-test site of the Radar Laboratories at the German Armed Forces University Munich in Neubiberg at frequencies from 20 GHz to 40 GHz. Linear polarisation was radiated by the exponential horn antennas. Normally, the device under test is attached to a specific aperture (height 40 cm, width 40 cm) as shown in the picture below in a metallic shelter wall.

Fig. 1 Setup for Shielding Measurements (schematically)

The test range was calibrated without any object between the two antennas, to adjust the zero-dB-transmission-value.

To prevent signals passing the DUT uncontrolled, the mesh was positioned directly between the two exponential horn antennas.

Test equipment:

Scalar Networkanalyzer type 562+6669B (10 MHz – 40 GHz) Wiltron 2 Double-ridged exponential horn antennas type HF 906, (1 – 18 GHz) R & S

Scalar Networkanalyzer type 562+6669B (10 MHz – 40 GHz) Wiltron 2 K-Band exponential horn antennas (20 GHz – 40 GHz) NARDA

3. Results of the Measurements

The diagram in the appendix presents the measured transmission values i.e. shielding efficiency of the shielding fabric **NOVA** in decibels as a function of frequency.

At the right of the diagram, some dB-values are printed for some typical frequencies of mobile services.

Shielding fabric NOVA Shielding Efficie		Efficiency
Communication services:	Single layered	Double layered
C-Net, TETRA, 450 MHz	23 dB	38 dB
D-Net, GSM 900, 900 MHz	28 dB	42 dB
E-Net, GSM1800, 1800 MHz	43 dB	56 dB
Blue-Tooth, WLAN 2450 MHz	36 dB	51 dB
5G (Sub 6GHz-Band) 3.4 – 3.8GHz	34 dB	39 dB
W-LAN (new generation) 5.8 GHz	20 dB	31 dB

Table 3: Shielding efficiency at different frequencies

Device under Test:	Shielding fabric NOVA in cotton version measured single- and double-layered
Subject:	Measuring the shielding efficiency against electromagnetic waves from 10 GHz to 40 GHz
Regulations:	According to IEEE 299-2006 and MILSTD 285 Scalar Networkanalyzer type 562+6669B (10 MHz – 40 GHz) Wiltron 2 K-Band exponential horn antennas (20 GHz – 40 GHz) NARDA

Date of Measurements: 28th of May 2019

Shielding Fabric NOVA	Shielding Effectiveness in dB		
Frequenz	Single layered	Double layered	
10 GHz	21 dB	38 dB	
12 GHz	20 dB	36 dB	
16 GHz	14 dB	35 dB	
18 GHz	14 dB	27 dB	
25 GHz	6 dB	18 dB	
30 GHz	6 dB	16 dB	
35 GHz	5 dB	14 dB	
40 GHz	4 dB	13 dB	

Table 4: Shielding efficiency at different frequencies

Prof. Dipl.-Ing. P. Pauli German Armed Forces University Munich Section: RF- and Microwaves, Radars 85577 Neubiberg, 31st of May 2019 Werner-Heisenberg-Weg 39 <prof.peter.pauli@t-online.de> Page 4

4. Final conclusions

In the most interesting frequency range of **GSM 900 (at 900MHz)** the shielding fabric **NOVA** *in cotton version* presents a shielding effectiveness of **28 dB.** After this shielding only **0.18%** of the incident power will appear behind the single layered fabric. Double layered the fabric NOVA presents a SE of **42 dB**. Now only **0.006%** of the power will penetrate.

Even at the **new 5G-Cellphone-Services between 3.4GHz and 3.8GHz**, the shielding of the *GEOVITAL NOVA* is single layered **34dB** and double layered **49 dB**. Only **0,04%** respectively less than **0,02%** of the incident power can be measured behind the shielding fabric *NOVA*.

At **10 GHz** ($\lambda = 3$ cm) the shielding fabric **NOVA** presents a shielding efficiency of **21dB**. In this case, only **0.8%** of the incident power is penetrating the mesh, 99.2% of it is removed by reflection. The double layered fabric presents a shielding of **38dB**. Now only **0.02%** of the power can be measured behind the fabric.

At **18 GHz** ($\lambda = 1.7$ cm) the shielding is single layered **14 dB** and double layered even **27 dB**. 4% respectively only 0.2% of the incident power is penetrating the DUT. These are considerable values of shielding in this GHz-range.

At **40 GHz** ($\lambda = 0.75$ cm) the shielding of the single layer is **4 dB** and of the double layer is 13 dB. At **13dB**, **5%** of the power penetrates the fabric, but **95%** are prevented to penetrate the fabric. This is still a remarkable value at these high GHz-frequencies!

In practice, these values guarantee a very good to excellent shielding effectiveness of Geovital NOVA, to protect sensitive areas or persons from electromagnetic radiation.

Prof. Dipl.-Ing. P. Pauli

Neubiberg, 31st of May 2019

Device under test: Shielding fabric *NOVA*, single layered Frequency Range: 100 MHz to 8 GHz

CH2 521	dB	MAG 10 dB/	REF 0	dB	▼ 1:	-23.34 dB	
10 dB 1 GHz					▼2:	-28.89 dB	
					∇3.	909.75 MHz	
						1.7985 GHz	
						-36.69 dB-	
						2.45025 GHz	
22				\sim			CAI
10 dB/		-	~				
	30						
-							CP
						-	FI
							10) SM(
							104
-90 dB							
START 100 MHz	:		1 GHz/			STOP 8 GHz	

Device under test: Shielding fabric NOVA, double layered Frequency Range: 100 MHz to 8 GHz

